Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.// recursive public class Solution { public int uniquePaths(int m, int n) { return backtrack(0, 0, m, n); } private int backtrack(int row, int col, int m, int n) { // to the target if(row == m - 1 && col == n - 1) return 1; // out of range if(row > m - 1 || col > n - 1) return 0; // move down + move right return backtrack(row + 1, col, m, n) + backtrack(row, col + 1, m, n); } }
Solution #2: loop, O(n^2) space & time
// loop, similar as min path sum, O(n^2) time & space public class Solution { public int uniquePaths(int m, int n) { int[][] res = new int[m][n]; // init left for(int i = 0; i < m; i++) { res[i][0] = 1; } // init top for(int j = 0; j < n; j++) { res[0][j] = 1; } // add values for(int i = 1; i < m; i++) { for(int j = 1; j < n; j++) { res[i][j] = res[i - 1][j] + res[i][j - 1]; } } return res[m - 1][n - 1]; } }
Solution #3: loop, O(n^2) time, O(n) space
// loop, similar as min path sum, O(n^2) time, O(n) space public class Solution { public int uniquePaths(int m, int n) { int[] res = new int[n]; // init array for(int j = 0; j < n; j++) { res[j] = 1; } // add values for(int i = 1; i < m; i++) { // reset the head to 1 (simulate the next row head) // similar to set all left most elements in a 2D array to 1 res[0] = 1; for(int j = 1; j < n; j++) { res[j] = res[j - 1] + res[j]; } } return res[n - 1]; } }
Many thanks to:
http://cuijing.org/interview/leetcode/summary-of-dynamic-programming-in-leetcode.html
&
http://yucoding.blogspot.com/2013/04/leetcode-question-116-unique-path-i.html
No comments:
Post a Comment