Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.// recursive
public class Solution {
public int uniquePaths(int m, int n) {
return backtrack(0, 0, m, n);
}
private int backtrack(int row, int col, int m, int n) {
// to the target
if(row == m - 1 && col == n - 1)
return 1;
// out of range
if(row > m - 1 || col > n - 1)
return 0;
// move down + move right
return backtrack(row + 1, col, m, n) + backtrack(row, col + 1, m, n);
}
}
Solution #2: loop, O(n^2) space & time
// loop, similar as min path sum, O(n^2) time & space
public class Solution {
public int uniquePaths(int m, int n) {
int[][] res = new int[m][n];
// init left
for(int i = 0; i < m; i++) {
res[i][0] = 1;
}
// init top
for(int j = 0; j < n; j++) {
res[0][j] = 1;
}
// add values
for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++) {
res[i][j] = res[i - 1][j] + res[i][j - 1];
}
}
return res[m - 1][n - 1];
}
}
Solution #3: loop, O(n^2) time, O(n) space
// loop, similar as min path sum, O(n^2) time, O(n) space
public class Solution {
public int uniquePaths(int m, int n) {
int[] res = new int[n];
// init array
for(int j = 0; j < n; j++) {
res[j] = 1;
}
// add values
for(int i = 1; i < m; i++) {
// reset the head to 1 (simulate the next row head)
// similar to set all left most elements in a 2D array to 1
res[0] = 1;
for(int j = 1; j < n; j++) {
res[j] = res[j - 1] + res[j];
}
}
return res[n - 1];
}
}
Many thanks to:
http://cuijing.org/interview/leetcode/summary-of-dynamic-programming-in-leetcode.html
&
http://yucoding.blogspot.com/2013/04/leetcode-question-116-unique-path-i.html
No comments:
Post a Comment