Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Solution #1:
// DP, O(n^2) time, O(n^2) space
public class Solution {
public int minPathSum(int[][] grid) {
int row = grid.length;
int col = grid[0].length;
int[][] res = new int[row][col];
// init
res[0][0] = grid[0][0];
// left
for(int i = 1; i < row; i++) {
res[i][0] = res[i - 1][0] + grid[i][0];
}
// top
for(int j = 1; j < col; j++) {
res[0][j] = res[0][j - 1] + grid[0][j];
}
// rest elements
for(int i = 1; i < row; i++) {
for(int j = 1; j < col; j++) {
res[i][j] = grid[i][j] + Math.min(res[i - 1][j], res[i][j - 1]);
}
}
return res[row - 1][col - 1];
}
}
Solution #2:
// DP, O(n^2) time, O(n) space
public class Solution {
public int minPathSum(int[][] grid) {
int row = grid.length;
int col = grid[0].length;
int[] res = new int[col];
// init
Arrays.fill(res, Integer.MAX_VALUE);
res[0] = 0;
// rest elements
for(int i = 0; i < row; i++) {
// init the 0th sum = old 0th element + the new 0th element
// just init the 0th column every time dynamically
res[0] = res[0] + grid[i][0];
// loop through each element of each row
for(int j = 1; j < col; j++) {
res[j] = grid[i][j] + Math.min(res[j], res[j - 1]);
}
}
return res[col - 1];
}
}
Many thanks to: http://fisherlei.blogspot.com/2012/12/leetcode-minimum-path-sum.html
No comments:
Post a Comment