Monday, October 28, 2013

Leetcode - Minimum Path Sum


Minimum Path Sum


Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.

Solution #1:
// DP, O(n^2) time, O(n^2) space
public class Solution {
    public int minPathSum(int[][] grid) {
        int row = grid.length;
        int col = grid[0].length;
        
        int[][] res = new int[row][col];
        // init
        res[0][0] = grid[0][0];
        
        // left
        for(int i = 1; i < row; i++) {
            res[i][0] = res[i - 1][0] + grid[i][0];
        }
        // top
        for(int j = 1; j < col; j++) {
            res[0][j] = res[0][j - 1] + grid[0][j];
        }
        
        // rest elements
        for(int i = 1; i < row; i++) {
            for(int j = 1; j < col; j++) {
                res[i][j] = grid[i][j] + Math.min(res[i - 1][j], res[i][j - 1]);
            }
        }
        
        return res[row - 1][col - 1];
    }
}

Solution #2:
// DP, O(n^2) time, O(n) space
public class Solution {
    public int minPathSum(int[][] grid) {
        int row = grid.length;
        int col = grid[0].length;
        
        int[] res = new int[col];
        // init
        Arrays.fill(res, Integer.MAX_VALUE);
        res[0] = 0;
        
        // rest elements
        for(int i = 0; i < row; i++) {
            // init the 0th sum = old 0th element + the new 0th element
            // just init the 0th column every time dynamically
            res[0] = res[0] + grid[i][0];
            
            // loop through each element of each row
            for(int j = 1; j < col; j++) {
                res[j] = grid[i][j] + Math.min(res[j], res[j - 1]);
            }
        }
        
        return res[col - 1];
    }
}

Many thanks to: http://fisherlei.blogspot.com/2012/12/leetcode-minimum-path-sum.html

No comments:

Post a Comment