Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Solution #1:
// DP, O(n^2) time, O(n^2) space public class Solution { public int minPathSum(int[][] grid) { int row = grid.length; int col = grid[0].length; int[][] res = new int[row][col]; // init res[0][0] = grid[0][0]; // left for(int i = 1; i < row; i++) { res[i][0] = res[i - 1][0] + grid[i][0]; } // top for(int j = 1; j < col; j++) { res[0][j] = res[0][j - 1] + grid[0][j]; } // rest elements for(int i = 1; i < row; i++) { for(int j = 1; j < col; j++) { res[i][j] = grid[i][j] + Math.min(res[i - 1][j], res[i][j - 1]); } } return res[row - 1][col - 1]; } }
Solution #2:
// DP, O(n^2) time, O(n) space public class Solution { public int minPathSum(int[][] grid) { int row = grid.length; int col = grid[0].length; int[] res = new int[col]; // init Arrays.fill(res, Integer.MAX_VALUE); res[0] = 0; // rest elements for(int i = 0; i < row; i++) { // init the 0th sum = old 0th element + the new 0th element // just init the 0th column every time dynamically res[0] = res[0] + grid[i][0]; // loop through each element of each row for(int j = 1; j < col; j++) { res[j] = grid[i][j] + Math.min(res[j], res[j - 1]); } } return res[col - 1]; } }
Many thanks to: http://fisherlei.blogspot.com/2012/12/leetcode-minimum-path-sum.html
No comments:
Post a Comment